Preliminary communication

Generation of the dichloromethane complex [$(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)$] + BF₄⁻, and its conversion to the oxidative addition product [$(\eta^5-C_5Me_5)Re(NO)(PPh_3)(Cl)(CH_2Cl)$] + BF₄⁻

Charles H. Winter and J.A. Gladysz *

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (U.S.A.) (Received June 14th, 1988)

Abstract

Reaction of $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CH_3)$ and $HBF_4 \cdot OEt_2$ in CH_2Cl_2 at $-78^{\circ}C$ gives the dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CICH_2Cl)]^+$ BF_4^- , which undergoes the title transformation at $-35^{\circ}C$. The ReClCH₂Cl carbon is attacked by halide nucleophiles (X⁻) to give XCH₂Cl and the chloride complex $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(Cl)$, and exhibits a ¹³C NMR resonance that is coupled to phosphorus (d, ³J(CP) 5.0 Hz) and geminal hydrogens (t, ¹J(CH) 186 Hz).

The oxidative addition of an alkyl halide to a coordinatively unsaturated metal complex is a key step in a variety of important transformations (e.g., Monsanto methanol to acetic acid process [1], carbon-carbon bond-forming cross-coupling reactions [2]). Although several mechanisms have been documented [3], competing or prior alkyl halide coordination remains a possibility in nearly all cases. Alkyl halide complexes have recently been synthesized [4–6], but none have yet been found to directly lead to oxidative addition products. However, Crabtree has made the important observation that addition of an H₂ acceptor reagent to the Ir^{III} methyl iodide complex [(Ph₃P)₂Ir(H)₂(ICH₃)₂]⁺ gives a dimer of Ir^{III} oxidative addition product [(Ph₃P)₂Ir(CH₃)(I)]⁺ [4b]. In this communication, we report the generation of dichloromethane complex [(η^5 -C₅Me₅)Re(NO)(PPh₃)(ClCH₂Cl)]⁺ BF₄⁻ (1), and its facile conversion to oxidative addition product [(η^5 -C₅Me₅)Re(NO)(PPh₃)(ClCH₂Cl)]⁺ BF₄⁻ (2).

Pentamethylcyclopentadienyl methyl complex [7] $(\eta^5-C_5Me_5)Re(NO)(PPh_3)-(CH_3)$ and HBF₄ · OEt₂ (1.01 equiv.) were combined in CH₂Cl₂ or CD₂Cl₂ at $-78^{\circ}C$ (Scheme 1). NMR spectra (¹H, ¹³C, ³¹P{¹H}, ¹⁹F) were immediately recorded at $-85^{\circ}C$, and showed the clean formation of a new complex 1 [8^{*}]. An

^{*} Reference number with asterisk indicates a note in the list of references.

Scheme 1. Generation and reactions of dichloromethane complex $[(\eta^5 - C_5 Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+$ BF₄⁻ (1).

analogous reaction of cyclopentadienyl methyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)-(CH_3)$ has been shown to give dichloromethane complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)-(ClCH_2Cl)]^+$ BF₄⁻ [9]. On the basis of spectral similarities, and particularly the dichloromethane carbon ¹³C NMR chemical shift (22 ppm downfield from free CH₂Cl₂; Fig. 1) and coupling constants, **1** was formulated as the Re¹ pentamethyl-cyclopentadienyl dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+$ BF₄⁻.

The structure of 1 was further supported by reactions with halides salts $[Ph_3P=N=PPh_3]^+ Br^-$ and $Ph_3P^+CH_3 I^-$ (1.2–1.4 equiv, -78°C). Subsequently isolated were mixtures of halide complexes (96–97%) of which chloride complex (η^5 -C₅Me₅)Re(NO)(PPh_3)(Cl) (4, Scheme 1) was the major component (92–95%) [10*]. Analysis of the second reaction by GLC and GLC/MS indicated the formation of ICH₂Cl (88%). Dichloromethane is normally inert towards halide ions. Hence, the dichloromethane ligand is significantly activated towards nucleophilic attack, providing a new type of easily generated chloromethylating agent.

Cyclopentadienyl dichloromethane complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)-(ClCH_2Cl)]^+ BF_4^-$ undergoes first-order decomposition at -25 to $-10^{\circ}C$ to bridging chloride complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)]_2Cl^+ BF_4^-$ (k_{obs} $3.5 \pm 0.2 \times 10^{-4} s^{-1}$, $-10.1^{\circ}C$) [9]. However, **1** is less stable thermally. A sample of $1 (-78^{\circ}C)$ was inserted into a $-35^{\circ}C$ NMR probe. NMR spectra showed 1, and two new species (2 [11*], 3 [12*], in 61-64\%, 7-12\%, and 24-32\% yields, respectively. Complex 1 then underwent first-order decomposition (k_{obs} $5.0 \pm 0.2 \times 10^{-4} s^{-1}$) to 2 (k_{obs} (appearance) $5.0 \pm 0.2 \times 10^{-4} s^{-1}$). The concentration of 3 did not change. The sample was warmed to room temperature, whereupon 3 underwent first-order

Fig. 1. (a) ${}^{13}C{}^{1}H{}$ NMR spectrum of dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+$ BF₄⁻ (1) with inset showing ${}^{3}J(CP)$ 5.0 Hz. (b) ${}^{13}C$ NMR spectrum of 1 showing ${}^{1}J(CH)$ 186.0 Hz. All spectra are at $-85^{\circ}C$.

decomposition $(k_{obs} 5.1 \pm 0.2 \times 10^{-4} \text{ s}^{-1}, 25^{\circ}\text{C})$ to 2. Hence, 2 is formed by two pathways.

Analogous preparative reactions gave 2 as a gold-yellow, spectroscopically pure powder (60-70%), which was characterized by IR and ¹H, ¹³C{¹H}, and ³¹P NMR spectroscopy [11*]. Complex 2 was assigned as the five-coordinate Re^{III} oxidative addition product [(η^5 -C₅Me₅)Re(NO)(PPh₃)(Cl)(CH₂Cl)]⁺ BF₄⁻ based upon the following properties: (1) the upfield ¹H NMR chemical shifts of the CH₂ protons relative to those of CH₂Cl₂, (2) the upfield ¹³C NMR chemical shift of the CH₂ carbon relative to that of CH₂Cl₂ and 1, and its sizeable phosphorus coupling, (3) a mass spectral parent ion for the cation (FAB), and (4) an IR ν (N=O) that is much greater than normal for cationic complexes [(η^5 -C₅Me₅)Re(NO)(PPh₃)(L)]⁺ [7]. A similar IR ν (N=O) trend is seen with analogous cyclopentadienyl complexes [9b].

We presently interpret the formation of dichloromethane complex 1 as proceeding via the coordinatively unsaturated fragment $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)]^+ BF_4^-$ (5) [9b]. Hence, dichloromethane coordination to 5 is faster than oxidative addition. It is attractive to propose that oxidative addition occurs directly from 1, analogously to pre-coordination in arene C-H oxidative addition [13]. However, our results are equally consistent with prior dichloromethane dissociation from 1 to give 5, followed by an oxidative addition pathway not involving 1 [3]. Importantly, 1 and CH₃I (10 equiv.) react within 5 min at -35° C to give methyl iodide complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ICH_3)]^+ BF_4^-$ (6) [14]. This suggests that the dichloromethane ligand of 1 readily dissociates. Finally, pentamethylcyclopentadienyl ligands are more electron releasing than cyclopentadienyl ligands, and hence should facilitate the oxidation of Re¹ to Re¹¹¹. This rationalizes the greater thermal stability (and alternative decomposition mode) of the cyclopentadienyl analogue of 1. We further suggest that the electron withdrawing spectator chloride in 1 promotes oxidative addition, as methyl iodide complex 6 decomposes chiefly by other pathways.

Several dichloromethane oxidative addition products have been previously reported [15]. Our data suggest that these may form via similar coordination/oxidative addition sequences. Additional properties of dichloromethane complexes will be described in the near future [9b].

Acknowledgement. We thank the NSF for support of this research and the NIH for a postdoctoral fellowship (CHW).

References

- 1 D. Forster, Adv. Organomet. Chem., 17 (1979) 255.
- 2 (a) L.S. Hegedus and R.K. Stiverson, J. Am. Chem. Soc., 96 (1974) 3250; (b) E. Negishi, Acc. Chem. Res., 15 (1982) 340.
- 3 J.P. Collman, L.S. Hegedus, J.R. Norton, and R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, California, 1987, pp 306–310.
- 4 (a) R.H. Crabtree, J.W. Faller, M.F. Mellea, and J.M. Quirk, Organometallics, 1 (1982) 1361; (b) M.J. Burk, B. Segmuller, and R.H. Crabtree, ibid., 6 (1987) 2241; (c) R.J. Kulawiec and R.H. Crabtree, ibid., 7 (1988) 1891.
- 5 (a) C.H. Winter, A.M. Arif, and J.A. Gladysz, J. Am. Chem. Soc., 109 (1987) 7560; (b) C.H. Winter, A.M. Arif, and J.A. Gladysz, Organometallics, in press.
- 6 (a) F.J. Liotta Jr., G. van Duyne, and B.K. Carpenter, Organometallics 6 (1987) 1010; (b) M.R. Colsman, M.D. Noirot, M.M. Miller, O.P. Anderson, and S.H. Strauss, J. Am. Chem. Soc., in press.
- 7 A.T. Patton, C.E. Strouse, C.B. Knobler, and J.A. Gladysz, J. Am. Chem. Soc., 105 (1983) 5804.
- 8 Data on 1 (CD₂Cl₂ or CH₂Cl₂, -85° C): ¹H NMR (δ) 1.68 (s, 5Me); ¹³C{¹H} NMR (ppm) 102.58 (s, C_5 Me₅), 75.76 (d, ³J(CP) 5.0 Hz, CH₂), 9.37 (s, C_5Me_5); ³¹P{¹H} NMR (ppm) 16.3 (s); ¹⁹F NMR (δ) -152.68 (s).
- 9 (a) J.M. Fernández and J.A. Gladysz, Inorg. Chem., 25 (1986) 2672; (b) J.M. Fernández and J.A. Gladysz, Organometallics, in press.
- 10 Authentic samples of halide complexes $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(X)$ were prepared in high yields by reactions of $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CH_3)$ and HCl (CH_2Cl_2) , HBr (C_6H_6) , and HI (C_6H_6) , respectively. These were characterized by microanalyses (C,H), and IR $(cm^{-1}, KBr; \nu(N=O)$ 1635. 1642, 1644), ¹H NMR $(\delta, CDCl_3; C_5Me_5$ (s) 1.63, 1.66, 1.73), ¹³C{¹H} NMR (ppm, CDCl_3; C_5Me_5 (d, J(CP) 1.8–2.0 Hz) 100.36, 100.14, 99.78; C_5Me_5 (s) 9.75, 10.02, 10.65), and ³¹P{¹H} NMR (ppm, CDCl_3; 18.2, 16.8, 14.8 (s)) spectroscopy.
- 11 Data on 2: ¹H NMR (δ , CDCl₃) 7.75–7.36 (m, 15H), 4.58 (dd, J(HH) 7.1 Hz, J(HP) 3.1 Hz, CHH'), 4.22 (dd, J(HH) 7.2 Hz, J(HP) 3.0 Hz, CHH'), 1.93 (s, 5Me); ¹³C{¹H} NMR (ppm, CDCl₃) 135.10 (d, J(CP) 9.0 Hz), 133.49 (s), 132.9 (d, J(CP) 52.5 Hz), 129.07 (d, J(CP) 11.0 Hz). 115.91 (s, C₅Me₅), 47.68 (d, J(CP) 15.5 Hz, CH₂), 10.22 (s, C₅Me₅); ³¹P{¹H} NMR (ppm, CDCl₃) 10.1 (s); IR (cm⁻¹, KBr) ν (NO) 1739, ν (BF) 1084, 1055; mass spectrum ((+)-FAB, 7 kV, Ar, 3-nitrobenzyl alcohol; m/Z (relative intensity), ¹⁸⁷Re, ³⁵Cl) 698 (M^+ , 26%), 649 (M^+ CH₂Cl, 84%), 436 (M^+ PPh₃, 59%), 262 (Ph₃P⁺, 63%), 154 (100%). Compound **2** forms as one geometric isomer, and decomposes over the course of 24 h in CH₂Cl₂; analytically pure samples have not been obtained: Found: C, 45.06; H, 4.11; Cl, 7.89. C₂₉H₃₂BCl₂F₄NOPRe calcd.: C, 44.34; H, 4.11; Cl, 9.03%.
- 12 Data on 3 (CD₂Cl₂, -85° C): ¹H NMR (δ) 1.60 (s, 5Me); ¹³C{¹H} NMR (ppm) 101.35 (s, C₅Me₅), 9.74 (s, C₅Me₅); ³¹P{¹H} NMR (ppm) 22.2 (s); ¹⁹F NMR (δ) -152.16 (s). We have not been able to identify a fourth ligand in 3. No NMR evidence is observed for ether or BF₄⁻ coordination, and an identical species forms under argon. Addition of [Ph₃P=N=PPh₃]⁺ I⁻ immediately gives iodide complex (η^5 -C₅Me₅)Re(NO)(PPh₃)(I). We are reluctant to formulate 3 as the unencumbered Lewis acid [(η^5 -C₅Me₅)Re(NO)(PPh₃)]⁺ BF₄⁻⁻ (5).
- 13 W.D. Jones and F.J. Feher, J. Am. Chem. Soc., 106 (1984) 1650.
- 14 Data on 6: ¹H NMR (δ, CD₂Cl₂) 7.54-7.26 (m, 15H), 2.44 (s, ICH₃), 1.85 (s, 5Me); ³¹P(¹H) NMR (ppm, CD₂Cl₂) 15.8 (s); IR (cm⁻¹, nujol) ν(N≡O) 1681. Ether precipitates 6 (72%) as a tan powder of ca. 90% purity; decomposition occurs over several hours in chlorinated solvents.
- 15 (a) E.G. Burns, S.S.C. Chu, P. de Meester, and M. Lattman, Organometallics, 5 (1986) 2383 and references therein; (b) W.L. Olson, D.A. Nagaki, and L.F. Dahl, ibid., 5 (1986) 630; (c) J. Chang and R.G. Bergman, J. Am. Chem. Soc., 109 (1987) 4298; (d) T.B. Marder, W.C. Fultz, J.C. Calabrese, R.L. Harlow, and D.A. Milstein, J. Chem. Soc., Chem. Commun., (1987) 1543.